Gradient Flow Approach to Geometric Convergence Analysis of Preconditioned Eigensolvers

نویسندگان

  • Andrew V. Knyazev
  • Klaus Neymeyr
چکیده

Preconditioned eigenvalue solvers (eigensolvers) are gaining popularity, but their convergence theory remains sparse and complex. We consider the simplest preconditioned eigensolver— the gradient iterative method with a fixed step size—for symmetric generalized eigenvalue problems, where we use the gradient of the Rayleigh quotient as an optimization direction. A sharp convergence rate bound for this method has been obtained in 2001–2003. It still remains the only known such bound for any of the methods in this class. While the bound is short and simple, its proof is not. We extend the bound to Hermitian matrices in the complex space and present a new self-contained and significantly shorter proof using novel geometric ideas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Estimates for Preconditioned Gradient Subspace Iteration Eigensolvers

Subspace iteration for computing several eigenpairs (i.e. eigenvalues and eigenvectors) of an eigenvalue problem is an alternative to the deflation technique whereby the eigenpairs are computed successively by projecting the problem onto the subspace orthogonal to the already found eigenvectors. The main advantage of the subspace iteration over the deflation is its ‘cluster robustness’: even if...

متن کامل

On preconditioned eigensolvers and Invert-Lanczos processes

This paper deals with the convergence analysis of various preconditioned iterations to compute the smallest eigenvalue of a discretized self-adjoint and elliptic partial differential operator. For these eigenproblems several preconditioned iterative solvers are known, but unfortunately, the convergence theory for some of these solvers is not very well understood. The aim is to show that precond...

متن کامل

ar X iv : 0 80 1 . 30 99 v 3 [ m at h . N A ] 1 6 M ar 2 00 9 GRADIENT FLOW APPROACH TO GEOMETRIC CONVERGENCE

Preconditioned eigenvalue solvers (eigensolvers) are gaining popularity, but their convergence theory remains sparse and complex. We consider the simplest preconditioned eigensolver— the gradient iterative method with a fixed step size—for symmetric generalized eigenvalue problems, where we use the gradient of the Rayleigh quotient as an optimization direction. A sharp convergence rate bound fo...

متن کامل

ar X iv : 0 80 1 . 30 99 v 2 [ m at h . N A ] 1 6 Ju n 20 08 GRADIENT FLOW

Preconditioned eigenvalue solvers (eigensolvers) are gaining popularity, but their convergence theory remains sparse and complex. We consider the simplest preconditioned eigensolver— the gradient iterative method with a fixed step size—for symmetric generalized eigenvalue problems, where we use the gradient of the Rayleigh quotient as an optimization direction. We prove a known sharp and simple...

متن کامل

Dynamical Systems and Non-Hermitian Iterative Eigensolvers

Simple preconditioned iterations can provide an efficient alternative to more elaborate eigenvalue algorithms. We observe that these simple methods can be viewed as forward Euler discretizations of well-known autonomous differential equations that enjoy appealing geometric properties. This connection facilitates novel results describing convergence of a class of preconditioned eigensolvers to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2009